Barbaric Science from a Captive Poet: Oded Maler, in memoriam

Simulation-Based and Data-Driven Reasoning for CPS

April 18, 2019 Hybrid Systems: Computation and Control 2019 Jyo Deshmukh

USC Viterbi

Avoid Crashing, Falling, Burning, ...

- We want to design systems that do all the things we envisioned them to do, while not doing stupid things that we did not envision.
- We want to develop methods to check whether bad things can happen:
 - 1) Formal techniques: where we build models, *prove* properties of the models
 - 2) Virtual testing techniques: where we build models, and *test* them extensively
 - 3) Real-world testing techniques: where we take the implementations in the *real-world* and test (as much as possible)
- From the purist/mathematical elitist view point, we mostly want to do (1)
- From the computer science/model-based perspective, we never want to do (3)
- (2) is the "barbaric" tradeoff that this talk is going to delve into ...

USC Viterbi

On models and justification for barbarism

- Software: chain of semantics-preserving models (high-level PL to transistors)
- Not true in the physical world, where models are approximations

"This fact renders our early heroic CS efforts to prove decidability results on hybrid systems somewhat misguided, at least from an applicative point of view. In one of the early hybrid systems meetings I organized in Grenoble in the 90s, Paul Caspi presented a cartoon of a dialog between a control engineer, saying: it is trivial and a theoretical computer scientist responding: it is undecidable! But the noble activity of doing math for its own sake is common in all academic engineering domains, control included."

[1] Oded Maler, Some Thoughts on Runtime Verification, (2016)

USC Viterbi

Real models are ugly!

$$\dot{p} = c_1 \left(2\hat{u_1} \sqrt{\frac{p}{c_{11}} - \left(\frac{p}{c_{11}}\right)^2} - (c_3 + c_4c_2p + c_5c_2p^2 + c_6c_2^2p) \right)$$
 Very

$$\dot{r} = 4 \left(\frac{c_3 + c_4c_2p + c_5c_2p^2 + c_6c_2^2p}{c_{13}(c_3 + c_4c_2p_{est} + c_5c_2p_{est}^2 + c_6c_2^2p_{est})(1 + i + c_{14}(r - c_{16}))} - r \right)$$

$$\dot{p}_{est} = c_1 \left(2\hat{u_1} \sqrt{\frac{p}{c_{11}} - \left(\frac{p}{c_{11}}\right)^2} - c_{13} \left(c_3 + c_4c_2p_{est} + c_5c_2p_{est}^2 + c_6c_2^2p_{est}\right) \right)$$

$$\dot{i} = c_{15}(r - c_{16})$$

$$Formal verification out of reach$$

USC Viterbi

School of Engineering Department of Computer Science

My (narrow) view into Oded's broad impacts

- Barbaric Reachability Analysis
 - A quest to identify techniques that work for general, real-world models
- Requirement-guided Testing/Falsification
 A quest to impress the engineers with logics and magics
 - Learning temporal abstractions from data
 - A quest to "civilize" machine learning

USC Viterbi

Barbaric Reachability

School of Engineering Department of Computer Science

Simulation-guided Reachability Analysis

Postulate 1 (Simulation is Fine) An *intelligent mortal* can solve the reachability problem for a well-behaved closed continuous system using a finite amount of numerical simulation.

Main ideas:

- 1. Discretize input signal space
- Express exploration of inputs as a tree
- 3. Merge nearby already explored regions

On Systematic Simulation of Open Continuous Systems, Jim Kapinski, Bruce H. Krogh, Oded Maler, and Olaf Stursberg, *HSCC*, 2003

USC Viterbi

- Birth of the Breach tool (Barbaric Reachability)
- Sample initial states in a way that *covers* the initial states set
- Simulate from each sampled initial state
- Expand simulation trajectories into tubes using the (numerically approximated) sensitivity of the system
- Gives one of 3 verdicts:
 - Safe: If union of tubes does not intersect fail set
 - Unsafe: If there is a concrete trajectory that lands in fail
 - Unknown: Otherwise (leads to refinement iterations)

USC Viterbi

School of Engineering Department of Computer Science

Merits of barbarism

- "resolves the eternal tension between finite algorithmic termination and potential infinite precision of real numbers"
- Practitioners already use simulation tools extensively (Simulink, LabView)
- Very scalable!
- Quantities like sensitivity can be readily obtained from numeric integrators used in simulation tools

- Impacts of barbarism
- Important contribution in the "verification by simulation" literature^{1,2,3}
- Recent work on C2E2⁴, DryVr⁵, take this idea further with the notion of discrepancy functions
 - Led to exciting results: safety of industrial closed-loop control models
- Inspired: simulation-guided Lyapunov analysis⁶, contraction analysis⁷, ...
- 1. A. Bhatia, E. Frazzoli. Incremental search methods for reachability analysis of continuous and hybrid systems. HSCC 2004
- 2. A. Girard, and G. J. Pappas. Verification using simulation. HSCC 2006
- 3. M. Branicky, et al. Sampling-based planning, control and verification of hybrid systems. IEE Proceedings
- 4. P. S. Duggirala, S. Mitra, M. Viswanathan, & M. Potok, M. C2E2: A verification tool for stateflow models. TACAS 2015
- 5. B. Qi, C. Fan, M. Jiang, S. Mitra, DryVR 2.0: A tool for verification and controller synthesis of black-box CPS. HSCC 2018
- 6. J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, N. Arechiga, *Simulation-guided lyapunov analysis for hybrid dynamical systems*. HSCC 2014
- 7. A. Balkan, J. V. Deshmukh, J. Kapinski, P. Tabuada, Simulation-guided Contraction Analysis. ICC 2015.

USC Viterbi

School of Engineering Department of Computer Science

Requirement-Guided Testing/Falsification

School of Engineering Department of Computer Science

Not so long time ago in the automotive world ...

- Wild world where no one wrote safety requirements!
- Software design decisions were taken based on engineering experience
- Word documents in English, German, Japanese, Korean were used to define safety
- Test cases were written by hand, and relied on engineer insight
- Then one day, rode in STL with shining armor and the sword of formal methods!

Ad hoc safety

practices

[1] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, H. Yazarel, Verification of automotive control applications using S-Taliro, ACC '12
 [2] J. Kapinski *et al*, ST-Lib: a library for specifying and classifying model behaviors, SAE Technical Paper, 2016
 [3] H. Roehm, R. Gmehlich, T. Heinz, J. Oehlerking, M. Woehrle, Industrial Examples of Formal Specifications for Test Case
 Generation. In ARCH@ CPSWeek

USC Viterbi

School of Engineering Department of Computer Science

How it all happened: in the days before STL

Check transient response of x when driving with highway 73 pattern with temperature below 15°C

Chief Engineer

USC Viterbi

School of Engineering Department of Computer Science

USC Viterbi

School of Engineering Department of Computer Science

Falsification

Correctness was now an STL formula

USC Viterbi

School of Engineering Department of Computer Science

Introduction	Barbaric Reachability	Falsification		Learning	
Beyond Boolean satisfaction: STL speaks numbers					
 Aka Rol Robust for a and for a set and for a set	bust Satisfaction Value, or Rob ness ^{1,2} : function that given trace $x(t)$, ormula φ , φ , $x(t)$ to some real value fo t "signed distance" of the given trace x	oustness reach to the set of	x 3	D fr	BAD Distance rom bad
all traces Distance Distance Distance Going fro [1] G. Fainekos, and [2] A. Donzé, and O.	satisfying φ $\geq 0: x \in$ set of traces satisfying φ $< 0: x \notin$ set of traces satisfying φ m positive to negative = going towards G. J. Pappas. Robustness of temporal logic specif Maler. Robust satisfaction of temporal logic over	violation of φ fications for continuou freal-valued signals. F	s-time signals	50 . TCS 2009. 0	100
USC Viterb School of E Department of	ngineering 17 f Computer Science	7/29			

USC Viterbi

School of Engineering Department of Computer Science

Robustness permits optimization-guided testing

1. S-TaLiRo [Fainekos, Sankaranarayanan, et al., TACAS '11, HSCC '10, ACC '12]: Cross Entropy, Simulated Annealing, Genetic Algorithms, Ant Colony

2. Breach [Donzé et al., CAV '10, NSV '13]: Derivative-free Nelder-Mead, Evolutionary algorithms

USC Viterbi

School of Engineering Department of Computer Science

Collaborating with Oded was a unique experience

Oded: Jyo, why don't you do local search? Jyo, Jim, Xiaoqing: Oded, this has already been done. Oded: You should try even simpler (i.e. barbaric) local search Jyo: But it is simpler and more trivial than what people have tried Oded: Maybe, it will work better!

Let us also remark that giving preference to results proved with respect to the most general existing definitions is a mathematicians attitude that should not be adopted without a critical examination. Such an attitude can be counter-productive in young domains where "classical" results and definitions are only decade old, and the most appropriate formalization has not yet stabilized.

From: O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata, FORMATS 2006.

USC Viterbi

School of Engineering Department of Computer Science

Stochastlc Tabu search And Refinement

- Make search space finite
- Stochastically estimate least Ego point: (1,-2,1) cost neighbor and descend
- Tabu-list to avoid revisiting
- Randomness to escape local optima
- Refine search space in promising regions

USC Viterbi

School of Engineering Department of Computer Science

Falsification helps Toyota control designers

SITAR helps MIRAI control designer

- Model of Controller regulating air-flow through fuel-cell stack
- More than 7,000 Simulink blocks
- 5x slower than real-time to simulate
- Found violations of Overshoot on air-flow rate

Helps find rare bug in prototype Diesel Engine controller

- About 4000 Simulink blocks
- Successfully mined worst overshoot in 7 hours
- Found "worst-case" behavior using a combination of **Breach and S-TaLiRo**

USC Viterbi

School of Engineering Department of Computer Science

Civilizing Machine Learning

School of Engineering Department of Computer Science

- A brave new data-driven world
- Oded-trivia: His Ph.D. thesis was about learning!
 - \blacktriangleright L*-like active learning algorithm for ω -regular languages
- Machine learning is pretty barbaric. Maybe too barbaric!
- Can we learn interpretable/explainable/understandable artifacts from data?

Can we civilize it by using formal interpretable artifacts like STL?^{1,2,3,4,5,6}
 G. Bombara, C. I. Vasile, F. Penedo, H. Yasuoka, C. Belta. A decision tree approach to data classification using STL, HSCC 2016.
 Z. Kong, A. Jones, A. M. Ayala, E. A. Gol, and C. Belta. *TL inference for classification and prediction from data*. HSCC 2014
 E. Bartocci, L. Bortolussi, and G. Sanguinetti. *Data-driven statistical learning of temporal logic properties* FORMATS 2014.
 L. Nenzi, S. Silvetti, E. Bartocci, L. Bortolussi, *A robust genetic algorithm for learning temporal specs from data*, QEST 2018
 S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, N. Shankar, Telex: Passive STL learning using only positive examples. RV 2017
 X. Jin, A. Donzé, J.V. Deshmukh, S. A. Seshia, *Mining requirements from closed-loop control models*. HSCC 2013, TCAD 2015
 B. Hoxha, A. Dokhanchi, and G. Fainekos.. *Mining parametric TL properties in MBD for CPS*, STTT 2018

USC Viterbi

School of Engineering Department of Computer Science

Inferring Parameter Values for PSTL from data

Given:

- ▶ PSTL formula $\varphi(\mathbf{p})$, $[\mathbf{p} = (p_1, p_2, ..., p_m)]$
- Fraces x_1, \dots, x_n

Find:

- Valuation $v(\mathbf{p})$ such that: $\forall i : x_i \vDash \varphi(v(\mathbf{p}))$
- And $\exists i: x_i \not\models \varphi(\nu(\mathbf{p}) \pm \delta)$: (small perturbation in $\nu(\mathbf{p})$ makes some trace not satisfy φ)
- Polarity fragment of PSTL (monotonicity in parameters) allows using binary search

E. Asarin, A. Donzé, O. Maler, D. Nickovic, Parametric identification of temporal properties. RV 2011

USC Viterbi

School of Engineering Department of Computer Science

USC Viterbi

School of Engineering Department of Computer Science

Projecting to validity boundaries

- Multi-parameter PSTL formulas have infinitely many δ-tight satisfying valuations; picking one requires ad hoc choice
- Alternative approach: consider the entire validity domain boundary, and use that to cluster¹; but how to compute efficiently?
- Oded's recent work: multi-criteria optimization for monotone functions
- Focus for his unfinished Latexotherapy exercise: how do you do supervised, unsupervised, semisupervised learning of STL formulas from data?

[1] M. Vazquez-Chanlatte, S. Ghosh, J. V. Deshmukh, A. Sangiovanni-Vincentelli, S. A. Seshia, *Time-Series Learning Using Monotonic Logical Properties*, RV 2018

C Viterbi

School of Engineering Department of Computer Science

Summary and personal reflections

- Do not be afraid to reinvent the wheel
- Beauty and Elegance in everything are worthy pursuits, and they often come from Simplicity
- There does not need to be a compromise between "very interesting math with little practical application" and "very barbaric methods with many practical applications":
 - Oded was a person who did both, and was unapologetic about either
 - His self-awareness about why he worked on a particular problem was rare, and refreshing

USC Viterbi

School of Engineering Department of Computer Science

Thanks to collaborators

- Jim Kapinski Xiaoqing Jin **Tommaso Dreossi** Thao Dang Alexandre Donzé Marcell Vazquez-Chanlatte Isaac Ito
- Sanjit Seshia

USC Viterbi

School of Engineering Department of Computer Science