
USC Viterbi
School of Engineering
Department of Computer Science

Simulation-Based and Data-Driven
Reasoning for CPS

April 18, 2019
Hybrid Systems: Computation and Control 2019

Jyo Deshmukh

Barbaric Science from a Captive Poet: Oded Maler, in memoriam

USC Viterbi
School of Engineering
Department of Computer Science

Avoid Crashing, Falling, Burning, …
u We want to design systems that do all the things we envisioned them to do, while not

doing stupid things that we did not envision.
u We want to develop methods to check whether bad things can happen:

1) Formal techniques: where we build models, prove properties of the models
2) Virtual testing techniques: where we build models, and test them extensively
3) Real-world testing techniques: where we take the implementations in the real-world

and test (as much as possible)
u From the purist/mathematical elitist view point, we mostly want to do (1)
u From the computer science/model-based perspective, we never want to do (3)
u (2) is the “barbaric” tradeoff that this talk is going to delve into …

Introduction Barbaric Reachability Falsification Learning

2/29

USC Viterbi
School of Engineering
Department of Computer Science

u Software: chain of semantics-preserving models (high-level PL to transistors)
u Not true in the physical world, where models are approximations

[1] Oded Maler, Some Thoughts on Runtime Verification, (2016)

On models and justification for barbarism

“This fact renders our early heroic CS efforts to prove decidability results on hybrid systems
somewhat misguided, at least from an applicative point of view. In one of the early hybrid
systems meetings I organized in Grenoble in the 90s, Paul Caspi presented a cartoon of a
dialog between a control engineer, saying: it is trivial and a theoretical computer scientist
responding: it is undecidable! But the noble activity of doing math for its own sake is
common in all academic engineering domains, control included.”

Introduction Barbaric Reachability Falsification Learning

3/29

USC Viterbi
School of Engineering
Department of Computer Science

Real models are ugly!

Very
nonlinear

Formal
verification
out of reach

Introduction Barbaric Reachability Falsification Learning

4/29

USC Viterbi
School of Engineering
Department of Computer Science

u Barbaric Reachability Analysis
�A quest to identify techniques that work for general, real-world models

u Requirement-guided Testing/Falsification
�A quest to impress the engineers with logics and magics

u Learning temporal abstractions from data
�A quest to “civilize” machine learning

My (narrow) view into Oded’s broad impacts
Introduction Barbaric Reachability Falsification Learning

5/29

USC Viterbi
School of Engineering
Department of Computer Science

Barbaric Reachability

Introduction Barbaric Reachability Falsification Learning

6/29

USC Viterbi
School of Engineering
Department of Computer Science

Simulation-guided Reachability Analysis

On Systematic Simulation of Open Continuous Systems, Jim Kapinski, Bruce H. Krogh, Oded Maler, and Olaf
Stursberg, HSCC, 2003

Main ideas:
1. Discretize input signal space
2. Express exploration of inputs as a

tree
3. Merge nearby already explored

regions

Introduction Barbaric Reachability Falsification Learning

7/29

USC Viterbi
School of Engineering
Department of Computer Science

Systematic Simulation with Sensitivity Analysis
u Birth of the Breach tool (Barbaric Reachability)
u Sample initial states in a way that covers the initial states set
u Simulate from each sampled initial state
u Expand simulation trajectories into tubes using the

(numerically approximated) sensitivity of the system
u Gives one of 3 verdicts:

� Safe: If union of tubes does not intersect fail set
� Unsafe: If there is a concrete trajectory that lands in fail
� Unknown: Otherwise (leads to refinement iterations)

FAIL

INITIAL

A. Donzé, & O. Maler, Systematic simulation using sensitivity analysis. HSCC 2007

Introduction Barbaric Reachability Falsification Learning

8/29

USC Viterbi
School of Engineering
Department of Computer Science

u “resolves the eternal tension between finite algorithmic termination and
potential infinite precision of real numbers”

u Practitioners already use simulation tools extensively (Simulink, LabView)
u Very scalable!
u Quantities like sensitivity can be readily obtained from numeric integrators

used in simulation tools

Merits of barbarism
Introduction Barbaric Reachability Falsification Learning

9/29

USC Viterbi
School of Engineering
Department of Computer Science

u Important contribution in the “verification by simulation” literature1,2,3

u Recent work on C2E24, DryVr5, take this idea further with the notion of discrepancy
functions
� Led to exciting results: safety of industrial closed-loop control models

u Inspired: simulation-guided Lyapunov analysis6, contraction analysis7, …

Impacts of barbarism

1. A. Bhatia, E. Frazzoli. Incremental search methods for reachability analysis of continuous and hybrid systems. HSCC 2004
2. A. Girard, and G. J. Pappas. Verification using simulation. HSCC 2006
3. M. Branicky, et al. Sampling-based planning, control and verification of hybrid systems. IEE Proceedings
4. P. S. Duggirala, S. Mitra, M. Viswanathan, & M. Potok, M. C2E2: A verification tool for stateflow models. TACAS 2015
5. B. Qi, C. Fan, M. Jiang, S. Mitra, DryVR 2.0: A tool for verification and controller synthesis of black-box CPS. HSCC 2018
6. J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, N. Arechiga, Simulation-guided lyapunov analysis for hybrid dynamical

systems. HSCC 2014
7. A. Balkan, J. V. Deshmukh, J. Kapinski, P. Tabuada, Simulation-guided Contraction Analysis. ICC 2015.

Introduction Barbaric Reachability Falsification Learning

10/29

USC Viterbi
School of Engineering
Department of Computer Science

Requirement-Guided Testing/Falsification

Introduction Barbaric Reachability Falsification Learning

11/29

USC Viterbi
School of Engineering
Department of Computer Science

u Wild world where no one wrote safety
requirements!

u Software design decisions were taken based on
engineering experience

u Word documents in English, German, Japanese,
Korean were used to define safety

u Test cases were written by hand, and relied on
engineer insight

u Then one day, rode in STL with shining armor
and the sword of formal methods!

STL

Ad hoc safety
practices

Introduction Barbaric Reachability Falsification Learning

12/29

Not so long time ago in the automotive world …

[1] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, H. Yazarel, Verification of automotive control applications using S-Taliro, ACC ’12
[2] J. Kapinski et al, ST-Lib: a library for specifying and classifying model behaviors, SAE Technical Paper, 2016
[3] H. Roehm, R. Gmehlich, T. Heinz, J. Oehlerking, M. Woehrle, Industrial Examples of Formal Specifications for Test Case
Generation. In ARCH@ CPSWeek

USC Viterbi
School of Engineering
Department of Computer Science

How it all happened: in the days before STL
Check transient response of x
when driving with highway 73

pattern with temperature
below 15oC

Chief Engineer

Control Designer

Introduction Barbaric Reachability Falsification Learning

13/29

USC Viterbi
School of Engineering
Department of Computer Science

Correctness was uh-oh, should be okay, looks good!

Uh Oh!time

!,
!"#$

time

… should be
okay

!,
!"#$

Looks good

time

!,
!"#$ Can we formalize “Uh-oh,

should be okay, looks good,
weird, clearly wrong, fuzzy?”

Our observation: Yes, using Signal Temporal Logic1,2

[1] O. Maler, and Dejan Nickovic. Monitoring temporal
properties of continuous signals. FORMATS, 2004.
[2] A. Donzé, and O. Maler. Robust satisfaction of
temporal logic over real-valued signals. FORMATS 2010.

Introduction Barbaric Reachability Falsification Learning

14/29

USC Viterbi
School of Engineering
Department of Computer Science

What do STL specifications look like?

0 10050

1

3

Always between time 0 and 100

!"#$%&[(,*((] 1 ≤ . / ≤ 3 .

/

Eventually at some time t
between time 20 and 60

From that time t, always till the
end of the signal trace

123456$""% 7(,8(!"#$%& .(/) < 0.1

0 100

1

-0.1
+0.1

60

.

/

Introduction Barbaric Reachability Falsification Learning

15/29

USC Viterbi
School of Engineering
Department of Computer Science

Correctness was now an STL formula

Uh Oh!time

!,
!"#$

time

… should be
okay

!,
!"#$

Looks good

time

!,
!"#$

Can we formalize “Uh-oh,
should be okay, looks good,
weird, clearly wrong, fuzzy?”

% ≡ Alw *,,* step ⇒ Alw *,2 3 − 3567 < 0.053567

Introduction Barbaric Reachability Falsification Learning

16/29

USC Viterbi
School of Engineering
Department of Computer Science

Beyond Boolean satisfaction: STL speaks numbers

Distance
from bad

u Aka Robust Satisfaction Value, or Robustness
u Robustness1,2: function that

� for a given trace !(#),
� and formula %,
�maps %, !(#) to some real value for each

time #

0 10050

3

BAD

• Intuition:
• Compute “signed distance” of the given trace ! to the set of

all traces satisfying %
• Distance ≥ 0 : ! ∈ set of traces satisfying %
• Distance < 0 : ! ∉ set of traces satisfying %
• Going from positive to negative = going towards violation of %

!

#

[1] G. Fainekos, and G. J. Pappas. Robustness of temporal logic specifications for continuous-time signals. TCS 2009.
[2] A. Donzé, and O. Maler. Robust satisfaction of temporal logic over real-valued signals. FORMATS 2010

Introduction Barbaric Reachability Falsification Learning

17/29

USC Viterbi
School of Engineering
Department of Computer Science

Robustness quantifies degree of satisfaction

Uh Oh!time

!,
!"#$

time

… should be
okay

!,
!"#$

Looks good

time

!,
!"#$

% ≡ Alw *,,* step ⇒ Alw *,2 3 − 3567 < 0.053567

<= = -0.2

<= = 0.01

<= = 0.2

Introduction Barbaric Reachability Falsification Learning

18/29

USC Viterbi
School of Engineering
Department of Computer Science

Robustness permits optimization-guided testing
!(#)

1. S-TaLiRo [Fainekos, Sankaranarayanan, et al., TACAS ’11, HSCC ’10, ACC ‘12]: Cross Entropy, Simulated Annealing, Genetic Algorithms, Ant
Colony
2. Breach [Donzé et al., CAV ‘10, NSV ‘13]: Derivative-free Nelder-Mead, Evolutionary algorithms

\

%(#)

Minimize
robustnessj

\
Compute

Robustness

Introduction Barbaric Reachability Falsification Learning

19/29

USC Viterbi
School of Engineering
Department of Computer Science

Collaborating with Oded was a unique experience
Oded: Jyo, why don’t you do local search?
Jyo, Jim, Xiaoqing: Oded, this has already been done.
Oded: You should try even simpler (i.e. barbaric) local search
Jyo: But it is simpler and more trivial than what people have tried
Oded: Maybe, it will work better!

From: O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata, FORMATS 2006.

Introduction Barbaric Reachability Falsification Learning

20/29

USC Viterbi
School of Engineering
Department of Computer Science

u Make search space finite

u Stochastically estimate least
cost neighbor and descend

u Tabu-list to avoid revisiting

u Randomness to escape local
optima

u Refine search space in
promising regions

StochastIc Tabu search And Refinement

Point Robustness

(1, -2, 1) 30

(3, 1, -2) 40

(-2, -3, -2) 10

(-3, -2, -3) 5

(1, -3, 1) 10
Tabu List

time

!
3

1

-2

-3
(+,+,−)

(−,−,+)

!
3

1

-2
-3

timeEgo point: (1,-2,1)

'(3

1

-2
-3

time

Neighbor 1: (3,1,-2)

3

1

-2
-3

time
')

Neighbor 2: (-2,-3,-2)

Introduction Barbaric Reachability Falsification Learning

21/29

USC Viterbi
School of Engineering
Department of Computer Science

Falsification helps Toyota control designers
SITAR helps MIRAI control designer

• Model of Controller regulating air-flow
through fuel-cell stack

• More than 7,000 Simulink blocks
• 5x slower than real-time to simulate
• Found violations of Overshoot on air-flow

rate

Helps find rare bug in prototype Diesel
Engine controller

• About 4000 Simulink blocks
• Successfully mined worst overshoot in 7

hours
• Found “worst-case” behavior using a

combination of Breach and S-TaLiRo

Introduction Barbaric Reachability Falsification Learning

22/29

USC Viterbi
School of Engineering
Department of Computer Science

Civilizing Machine Learning

Introduction Barbaric Reachability Falsification Learning

23/29

USC Viterbi
School of Engineering
Department of Computer Science

u Oded-trivia: His Ph.D. thesis was about learning!
�L*-like active learning algorithm for !-regular languages

u Machine learning is pretty barbaric. Maybe too barbaric!
u Can we learn interpretable/explainable/understandable artifacts from data?
u Can we civilize it by using formal interpretable artifacts like STL?1,2,3,4,5,6

A brave new data-driven world
Introduction Barbaric Reachability Falsification Learning

24/29

[1] G. Bombara,C. I. Vasile, F. Penedo, H. Yasuoka, C. Belta. A decision tree approach to data classification using STL, HSCC 2016.
[2] Z. Kong, A. Jones, A. M. Ayala, E. A. Gol, and C. Belta. TL inference for classification and prediction from data. HSCC 2014
[3] E. Bartocci, L. Bortolussi, and G. Sanguinetti. Data-driven statistical learning of temporal logic properties FORMATS 2014.
[4] L. Nenzi, S. Silvetti, E. Bartocci, L. Bortolussi, A robust genetic algorithm for learning temporal specs from data, QEST 2018
[5] S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, N. Shankar, Telex: Passive STL learning using only positive examples. RV 2017
[6] X. Jin, A. Donzé, J.V. Deshmukh, S. A. Seshia, Mining requirements from closed-loop control models. HSCC 2013, TCAD 2015
[7] B. Hoxha, A. Dokhanchi, and G. Fainekos.. Mining parametric TL properties in MBD for CPS, STTT 2018

USC Viterbi
School of Engineering
Department of Computer Science

Inferring Parameter Values for PSTL from data
u Given:

� PSTL formula ! " , [" = $%, $', … , $)]
� Traces *%, … , *+

u Find:
� Valuation ,(") such that: ∀0 ∶ *2 ⊨ ! , "
� And ∃0:*2 ⊭ !(,(")±6) : (small perturbation in
,(") makes some trace not satisfy !)

u Polarity fragment of PSTL (monotonicity in
parameters) allows using binary search

c = 1.5

time

*

Alw(x < c)
c = 1.0

c = 2

c = 0.0

E. Asarin, A. Donzé, O. Maler, D. Nickovic, Parametric identification of temporal properties. RV 2011

Introduction Barbaric Reachability Falsification Learning

25/29

USC Viterbi
School of Engineering
Department of Computer Science

!

ℎ

PSTL

• Use PSTL for feature
extraction

• Project each trace to #-
tight valuation for trace
of given formula $

• Cluster #-tight valuations
• Each hyper-box cluster is

an STL formula

Clusters have logical meaning!ev (̇) > ℎ ∧ ev ,,. (̇) < −ℎ

Spikey behavior:

Spikes!

No Spikes

Slow increase in signal

Logical clustering of time-series data
Introduction Barbaric Reachability Falsification Learning

26/29

USC Viterbi
School of Engineering
Department of Computer Science

u Multi-parameter PSTL formulas have infinitely
many !-tight satisfying valuations; picking one
requires ad hoc choice

u Alternative approach: consider the entire validity
domain boundary, and use that to cluster1; but
how to compute efficiently?

u Oded’s recent work: multi-criteria optimization
for monotone functions

u Focus for his unfinished Latexotherapy exercise:
how do you do supervised, unsupervised, semi-
supervised learning of STL formulas from data?

Projecting to validity boundaries
Introduction Barbaric Reachability Falsification Learning

27/29

[1] M. Vazquez-Chanlatte, S. Ghosh, J. V. Deshmukh, A. Sangiovanni-Vincentelli ,
S. A. Seshia, Time-Series Learning Using Monotonic Logical Properties, RV 2018

USC Viterbi
School of Engineering
Department of Computer Science

u Do not be afraid to reinvent the wheel
u Beauty and Elegance in everything are worthy pursuits, and they often

come from Simplicity
u There does not need to be a compromise between “very interesting math

with little practical application” and “very barbaric methods with many
practical applications”:
�Oded was a person who did both, and was unapologetic about either
�His self-awareness about why he worked on a particular problem was rare,

and refreshing

Summary and personal reflections
Introduction Barbaric Reachability Falsification Learning

28/29

USC Viterbi
School of Engineering
Department of Computer Science

Thanks to collaborators
• Jim Kapinski
• Xiaoqing Jin
• Tommaso Dreossi
• Thao Dang
• Alexandre Donzé
• Marcell Vazquez-

Chanlatte
• Isaac Ito
• Sanjit Seshia

29/29

