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A Melody of Formalisms for Timed Systems

q Timed automata (Alur, Dill)
q Timed temporal logics (Alur, Henzinger)
q Real-time logic RTL (Jahanian, Mok)
q Timed CSP (Reed, Roscoe)
q Timed transition systems (Henzinger, Manna, Pnueli)
q Timed I/O automata (Lynch, Vaandrager)
q Communicating shared resources (Gerber, Lee)
q TLA (Abadi, Lamport)

and many more

Lively discussion:
How to add continuous dynamics to formal models ?



The Grand Challenge for Hybrid Systems !!

Initial position y
Speed u
Start time D

Initial position x
Speed v
Start time 0

Does the cat catch the mouse ?



From Timed to Hybrid Systems
Maler, Manna, and Pnueli

Real-Time: Theory in Practice
LNCS 600, pp. 447—484, 1992

We propose a framework for the formal specification and verification of timed and 
hybrid systems. For timed systems we propose a specification language that refers to 
time only through age functions which measure the length of the most recent time 
interval in which a given formula has been continuously true. We then consider 
hybrid systems, which are systems consisting of a non-trivial mixture of discrete and 
continuous components, such as a digital controller that controls a continuous 
environment. The proposed framework extends the temporal logic approach which 
has proven useful for the formal analysis of discrete systems such as reactive 
programs. The new framework consists of a semantic model for hybrid time, the 
notion of phase transition systems, which extends the formalism of discrete 
transition systems, an extended version of Statecharts for the specification of hybrid 
behaviors, and an extended version of temporal logic that enables reasoning about 
continuous change.



Hybrid Traces: Modeling Executions of Hybrid Systems

Time moment = (real time t, discrete time n)
Lexicographic order over time moments

Time

State
Finite sequence of discrete changes

Continuous evolution



Phase Transition Systems

q State variables V partitioned into Vc and Vd

q Assertion I specifying initial states
q Set T of (discrete) transitions, where each transition t is a function 

from states to sets of states (transition t is enabled in state s if t(s) is 
non-empty)

q Lower bound lt for each transition t (specifies how long a transition must 
be enabled before it is taken)

q Upper bound ut for each transition t (specifies a  bound on how long a 
transition can be enabled without being taken)

q Set A of (continuous) activities, where each activity is a conditional 
differential equation: guard(Vd) à { dy/dt = exp | y in Vd }

Formal semantics of a phase transition system = Set of hybrid traces



Modeling the Grand Challenge



Proof Rules for Verification

Generalization of inductive invariants for fair transition systems
Relies on explicit solution of differential equations





Hybrid Systems Workshop
Technical Univ of Denmark, Lyngby

Meeting: October 1992; Proceedings: Summer 1993

R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel



Hybrid Automata: An algorithmic approach to the specification and 
verification of hybrid systems

Alur, Courcoubetis, Henzinger and Ho

Hybrid Systems
LNCS 736, pp. 209--229, 1992

We introduce the framework of hybrid automata as a model and specification 
language for hybrid systems. Hybrid automata can be viewed as a generalization of 
timed automata, in which the behavior of variables is governed in each state by a 
set of differential equations. We show that many of the examples considered in the 
workshop can be defined by hybrid automata. While the reachability problem is 
undecidable even for very restricted classes of hybrid automata, we present two 
semidecision procedures for verifying safety properties of piecewise-linear hybrid 
automata, in which all variables change at constant rates. The two procedures are 
based, respectively, on minimizing and computing fix-points on generally infinite 
state spaces. We show that if the procedures terminate, then they give correct 
answers. We then demonstrate that for many of the typical workshop examples, the 
procedures do terminate and thus provide an automatic way for verifying their 
properties.



Hybrid Systems: Towards a sustained discipline

q Hybrid Systems II, Ithaca, October 1994 (LNCS 999, 1995)
P. A. Antsaklis, W. Kohn, A. Nerode, and S. Sastry

q Hybrid Systems III: Verification and Control
DIMACS, New Jersey, Oct 1995 (LNCS 1066, 1996)
R. Alur, T. A. Henzinger, and E. Sontag

q Hybrid Systems IV, Ithaca, October 1996 (LNCS 1723, 1997)
P. A. Antsaklis, W. Kohn, A. Nerode, and S. Sastry

q Hybrid and Real-Time Systems, Grenoble, March 1997 (LNCS 1201)
O. Maler

q Hybrid Systems: Computation and Control (HSCC)
First International Workshop, Berkeley, April 13-15, 1998
T. A. Henzinger and S. Sastry (LNCS 1386)



Reachability Analysis via Face-Lifting

Dang and Maler

First HSCC,  LNCS 1386, pp. 96--109, 1998

In this paper we discuss the problem of calculating the reachable 
states of a dynamical system defined by ordinary differential 
equations or inclusions. We present a prototype system for 
approximating this set and demonstrate some experimental 
results.

Test-of-Time Award, HSCC 2019



Example: Airline safety

Evolution of velocity and flight path angle

Model based on:

Multiobjective hybrid controller synthesis
J. Lygeros, C. Tomlin, and S. Sastry,
Proc. HART, 1997



Example: Airline safety



Recap: Hybrid Systems, 1990s

Real-Time: Theory in Practice, REX Workshop
Mook, The Netherlands, 1991

Modeling and semantics

Hybrid Systems: Computation and Control
First International Workshop, Berkeley, 1998

Computational tools and case studies


