Oded Maler
Barbaric Science
from a Captive Poet

Our Work with Oded Maler and his Impact

Manfred Morari, UPenn and ETH

HSCC Montreal

April 18, 2019
Research at Caltech and ETH around 1997

Control of systems integrating logic, dynamics, and constraints

Alberto Bemporad, Manfred Morari*

Institut für Automatik, ETH - Swiss Federal Institute of Technology, ETHZ - ETL, CH 8092 Zürich, Switzerland

Received 17 March 1998; received in final form 16 September 1998

Systems described by interdependent physical laws, logic rules, and operating constraints are described by linear equations and inequalities involving continuous and integer variables. Model predictive control based on mixed-integer quadratic programming provides a systematic controller synthesis procedure.

Research at Caltech and ETH around 1997

Precursors to

- LTL specifications for controller synthesis
 - Tabuada, Pappas; *Linear Time Logic Control of Discrete-Time Linear Systems*, IEEE TAC 2006

- MPC controller design with stability and performance guarantees for linear switched (hybrid) systems
 - Borrelli, Bemporad, MM; Predictive Control for Linear and Hybrid Systems, Cambridge 2017
 - Marcucci & Tedrake, *Mixed Integer Formulations for Optimal Control of Piecewise-Affine Systems*, HSCC 2019
Then we discovered Hybrid Systems...

...and met Oded
Oded Maler, 1957-2018

• 1957 born in Haifa
• 1976-79 BA Computer Science, Technion
• 1980-84 MSc Management Science, Tel-Aviv University
 • “Evidence Propagation and Control Strategies in Bayesian Inference Networks” w/ Moshe Ben-Bassat
• 1986-90 PhD Computer Science, Weizmann Institute
 • “Finite Automata: Infinite Behavior, Learnability and Decomposition” w/ Amir Pnueli
• 2000 Habilitation, Univ. J. Fourier, Grenoble
 • “Discrete, Timed and Hybrid Systems”
• 1992- Researcher, Research Director, CNRS, VERIMAG
Oded Maler, 1957-2018

• Postdocs (12)
 • Peter Niebert, Hou Jianmin, Goran Frehse, Antoine Girard, Gregory Batt, Victor Schuppan, Ramzi Ben Salah, Alexandre Donze, Scott Cotton, Jiansheng Xing, Stefano Minopoli, Marcelo Forets

• PhD Students (19)
 • Thao Dang, Yasmina Abeddaiim, Moez Mahfoudh, Abdelkarin Kerbaa, Alexandre Donze, Ramzi Ben Salah, Dejan Nickovic, Scott Cotton, Colas Le Guernic, Aldrich Degorre, Julien Legriel, Selma Saidi, Jean Francois Kempf, Pranav Tendulkar, Jan Lanic, Thomas Ferrere, Abhinav Srivastav, Irini-Eleftheria Mens, Dogan Ulus
Oded Maler, 1957-2018

• Numerous courses, organization of workshops, invited presentations, research projects

• 1997 – 2000: Coordinator the *Esprit/LTR project 26270 VHS (Verification of Hybrid Systems)*, with the participation of UJF-Verimag, Dortmund, Nijmegen, Aalborg-Brics, Kiel, INPG-LAG, Weizmann, CWI, Ghent, Uppsala, ETH-Zurich, Nylstar SA, Sidmar, Krupp-Uhde.

• 2002 – 2005: Coordinator of the project *IST 33520 CC (Control and Computation)* with the participation of INPG-Verimag, ETHZ, Parades, Lund, CWI, Sienna, EDF and ABB.
Dear Alberto [Bemporad] and Manfred,

Thank you for showing interest in our project. On one hand I would be glad to cooperate with you. On the other I am not very enthusiastic about re-entering into the process of proposal editing, partners consultation, Brussels discussions, and all that. We have just added a 13th partner recently and I am not sure how authorities will react to further modification.

If you are not convinced by these humanitarian arguments, I can try to ask the other partners concerning their attitude as well as the European project officer....
Le 15 janvier 1999

Dear Mr. Föx:

As a coordinator of the project V118 22275.1 I would like to ask your permission for adding BFM-ZaV 1670 by Prof. M. Moreau to the project, starting from 1.1.2000. The work of the project is described by the documents they send you.

Sincerely yours,
Work Plan:
Project 26270 VHS (Verification of Hybrid Systems)

• Case Studies supplied by Dortmund and [chemical] industry
• Comparative study of models, techniques, tools from the verification community
• Theoretical and practical conclusions from the experience leading to improvements of models and tools
• Surveying the current practice of control software development in the industry and suggesting improvements based on formal and semiformal methods
Discrete-Time Hybrid Modeling and Verification

Fabio Danilo Torrisi¹ and Alberto Bemporad²,¹

Figure 1: Verification of hybrid systems: The process is modeled in HYSDEL. The model is automatically translated into MLD and PWA form, and used for proving safety properties

Also: European Journal of Control (2001)7:382-399
Fig. 6. Flowchart of the benchmark evaporator system.

Fig. 7. State transition diagram of the controller.
Lessons learned:

- Polytope manipulations are numerically challenging
- Take advantage of commercial MILP / MIQP solvers

Fig. 5. Reachability analysis. (a) Reach set evolution, guardline crossing, outer approximation of a new intersection, (b) Outer rectangular approximation of a new region intersection.
Some Examples of Contributions from Oded’s Group

• Antoine Girard, Colas Le Guernic
 • Introduction of Zonotopes to our community
 • Rigorous analysis of computational complexity vs error and good heuristics to reduce it
 • Use of support functions

• Goran Frehse
 • Extensions
 • Tool Development: SpaceEx
CC (Control & Computation) Mtg. 2003, Siena
Cover Story

The front cover shows how by working together, Jura Cement and ABB Switzerland Ltd achieved the first known successful application of a MLD system on a cement mill. ABB's wide and successful experience with this technology made it keen to see what benefits it could bring to other parts of the cement process and therefore approached Jura Cement about a collaboration to apply this cutting edge technology to one of their grinding units. The outcome for Jura Cement's Wildegg plant has been that the mill can be run for maximum production, achieving their Blaine targets, and also ensuring energy inputs and additives are used efficiently and effectively. Jura Cement has the first plant in the world the experience the benefits of ABB applying MLD to a cement mill.
ABB introduces ACS6080 drive for high performance motor control

ABB’s MP³C technology combines model predictive control with optimized pulse pattern to modulate the semiconductors. This means that at every point in time this control can anticipate the best motor operation point by finding the perfect compromise between dynamics, efficiency and harmonic distortion.
From: Oded Maler <Oded.Maler@univ-grenoble-alpes.fr>

Subject: Hi From Dagstuhl

Date: February 21, 2018 at 1:21:11 PM GMT+1

To: "Engell, Sebastian" <Sebastian.Engell@bci.tu-dortmund.de>, Morari Manfred <morari@control.ee.ethz.ch>, "Bruce H. Krogh" <krogh@ece.cmu.edu>

Hi Friends, I'm there in a formal methods for synthetic biology seminar. In parallel there is a seminar on MINLP, and the only name I recognized there is Ignacio Grossmann but he did not recognize me. It's a pity because I wanted to offer him a heretic guest lecture on the sacrilege and inutility of treating the Booleans as integers ;-)

Best,

--Oded
System Biology

• A cynical view
• An arrogant view
• A humble view
• A (relatively) sober view
• A sober (but subjective) view
Systems Biology: a Cynical View

- Systems Biology: the current **gold rush** for many **mathematical** and technical disciplines looking for **nutrition** (funding, self-esteem) in the **scientific food chain**
- Biophysics, Biomatics, Bioinformatics, Biostatistics...
- The story goes like this:
 - I do \(X \)
 - I do it for my pleasure, because I studied it, and anyway, this is the **only** thing I will do in my current incarnation...
 - ...fortunately \(X \) is **very** useful for Biology
 - When you have a **hammer**, everything looks like a **nail**
 - Personally this is how I came to the domain \((X = \text{automata, verification and hybrid systems})\)
 - Fortunately, my hammer is **universal**
Biologists are essentially very **concrete** beings, spending most of their time in the **kitchen** doing manual work.

They were not selected (initially) based on ability to manipulate **imaginary concepts** or creativity and rigor in the abstract world of ideas but rather..

..based on their **rigor** and **efficiency** at the **bench**

Now when they need to make a **real science** out of their details they need noble white collar brahmins, namely..

... physicists, mathematicians, computer scientists, as **spiritual guides**

Like monotheists converting the pagans, these merchants of abstract methodologies try to impress the poor savage with their **logics** and **miracles**
Systems Biology: a Humble View

- Biologists are working with the most fascinating, complex and mysterious real-life phenomena
- Living systems are more complex than the hydrogen atom or the electromagnetic field (and are not effectively reducible to them)
- Living systems are more sophisticated than your dumb terminal or smart phone or mobile robot or car
- Living systems are more mysterious and primordial than the prime numbers, the algebra of Boole or the free monoid
- If some of our dry tricks can help them, even a bit, in their grand march toward...
- ..understanding something about Life Itself or helping doctors kill less patients
- We should be very happy and proud for doing, for once, something meaningful
Systems Biology: a (relatively) Sober View

- The dynamics of a scientific discipline may have different periods with various trends and fashions
- This dynamics is not always optimized towards truth
- Many aspects (politics, social dynamics, commercial interests, cognitive inertia, media distortion) play an important role
- Probably most of what is published today in top journals will go to the garbage can of history
- Few centuries ago, the science of this guy (chemistry, medicine, metaphysics) was debated extensively in prime time
Today there is an **over emphasis** on doing something with data provided by new experimental machinery (omics)

The main question about “knowing” all these details is whether this knowledge:

- Is **sufficient** for understanding and learning something about underlying mechanisms? (certainly not)
- Is **necessary** for that? (very hopefully not)
- Is **helpful** or **counter-productive**?

Systems Biology is about seeking some clearer (conceptual and mathematical) models of **dynamical systems** at various **levels** of **abstraction**

These models, if thoughtfully constructed, and carefully and **systematically analyzed/simulated** may help reducing the gap between cellular biochemistry and physiology
Hey there. My name is Ouri Maler. I'm known by a couple of aliases online, including "sun tzu".
I enjoy writing fiction, which I've been putting online for years. If you're reading this, odds are you enjoy some of my writing. Maybe you like Saga of Soul, my deconstructive-slash-reconstructive magical girl webnovel about a teenage girl with a fondness for the scientific method, who applies it to her newfound abilities in-between trying to save the world from a procession of monsters and villains. Maybe you like Souls in a Vacuum, my short story of religion meeting politics meeting space-opera aboard Concordia, a massive space station where delegates from the various religions of the galaxy meet.
Maybe you like my fanfics, be they comedic rewrites of My Little Pony that gradually grew into a script-format equivalent of abridged series, or more serious tales of a paragon of superheroism being transported to the grim supervillain story of Worm, or stories of a ludicrously intelligent, hypercompetent mastermind wandering into that very same setting and doing his best to fix it with little
Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming¹

Mahyar Fazlyab, Manfred Morari, George J. Pappas

¹https://arxiv.org/abs/1903.01287
Canonical Problem

Given
- Trained neural network described by $f : \mathbb{R}^{n_x} \to \mathbb{R}^{n_y}$
- Bounded set $\mathcal{X} \subset \mathbb{R}^{n_x}$ of infinite number of inputs
- Set $S \subset \mathbb{R}^{n_y}$ on the output space

Goal:
- Check whether $f(\mathcal{X}) \subseteq S$
Example: Local Robustness in Image Classification

- \mathcal{X} is the set of all perturbations of an image

\[\mathcal{X} \xrightarrow{\text{Locally Robust Class}(\cdot)} f(.) \xrightarrow{\cdot} \mathcal{Y} = f(\mathcal{X}) \]

Local robustness: $\text{Class}(x)$ is the same for all $x \in \mathcal{X}$
Example: Local Robustness in Image Classification

- \mathcal{X} is the set of all perturbations of an image

$$\mathcal{X} \rightarrow f(.) \rightarrow \mathcal{Y} = f(\mathcal{X})$$

Class(x) is NOT the same for all $x \in \mathcal{X}$

- How can we certify local robustness of a trained NN around a test image?
Example: Safety Verification

- Learning forward kinematics of robotic arms [Xiang et al., 2018]
Safety Verification Problem

- **Goal:** Check whether $\mathcal{Y} \subseteq S$

 ![Diagram](image)

 \[
 \mathcal{X} \xrightarrow{f(.)} \mathcal{Y} := f(\mathcal{X})
 \]

- **Challenge:** Computation of \mathcal{Y} is NP-complete
 - Exhaustive evaluation of an “infinite” number of input examples

- **Our goal:** Convex relaxation of this problem: polynomial-time solvable
Related Work

- **Exact** (complete) verifiers for ReLU networks with exponential run-time (in the worst-case)
 - Mixed-Integer Linear Programming (MILP) solvers [Fischetti and Jo, 2017, Dutta et al., 2018, Tjeng et al., 2017]
Related Work

- **Exact** (complete) verifiers for ReLU networks with exponential run-time (in the worst-case)

- **Inexact** (incomplete) verifiers
 - Relaxation of activation functions [Kolter and Wong, 2017, Raghunathan et al., 2018a, Raghunathan et al., 2018b, Mirman et al., 2018, Weng et al., 2018, Zhang et al., 2018]
Related Work

- **Exact** (complete) verifiers for ReLU networks with exponential run-time (in the worst-case)

- **Inexact** (incomplete) verifiers

- **This work**: convex relaxation by adapting tools from robust control
ReLU Function

- Precisely described by 3 constraints

 \[y = \max(0, x) \quad y^2 = xy \quad y \geq 0 \quad y \geq x \]

- Relaxation: for any \((\lambda, \nu, \eta) \in \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+\)

 \[\lambda(y^2 - xy) + \nu(y - x) + \eta y \geq 0 \]

- Can be written as

 \[
 \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix}^\top
 \begin{bmatrix}
 0 & \lambda & -\nu \\
 \lambda & -2\lambda & \nu + \eta \\
 -\nu & \nu + \eta & 0
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix} \geq 0.
 \]

- The multipliers \((\lambda, \nu, \eta)\) will be decision variables
Precisely described by 3 constraints

\[y = \max(0, x) \quad \quad y^2 = xy \quad \quad y \geq 0 \quad \quad y \geq x \]
We converted the safety verification problem into an **LMI feasibility problem**
- A convex problem: can be solved in polynomial time

Pros:
- We can use various forms of QCs to abstract any type of activation function.
- Our method is able to capture the cross-coupling between neurons across different layers, thereby reducing conservatism, especially for deep networks.
- We can control the trade-off between computational complexity and conservatism by systematically including or excluding different types of QCs.
- Requires much less memory compared to similar (SDP-based) approaches

Cons:
- Limited scalability of SDP solvers.
Effect of Number of Hidden Neurons

- Network: one-layer with architecture (2-N-2) where \(N = 100, 500, 1000 \).
- ReLU activation function
- Input set: \(\ell_\infty \)-norm: \(\mathcal{X} = \{ x: \| x - x^* \|_\infty \leq \epsilon \} \) with \(x^* = (0.5, 0.5) \) and \(\epsilon = 0.1 \)

![Figure](image-url)

Figure: Increase in the number of hidden nodes
Effect of Magnitude of Perturbation

- Network: one-layer with architecture (2-500-2).
- ReLU activation function
- Input set: ℓ_∞-norm: $\mathcal{X} = \{x: \|x - x^*\|_\infty \leq \epsilon\}$ with $x^* = (0.5, 0.5)$ and $\epsilon = 0.1, 0.4, 0.8$.

Figure: increase in the magnitude of input set
Effect of Number of Layers

- Network: one-layer with architecture (2-100-...-100-2) with $\ell = 1, 2, 4, 6, 8, 10$ layers.
- ReLU activation function
- Input set: ℓ_∞-norm: $\mathcal{X} = \{x : \|x - x^*\|_\infty \leq \epsilon\}$ with $x^* = (0.5, 0.5)$ and $\epsilon = 0.1$.

![Figure showing the effect of number of layers on trained sets for different activation functions and norms.](image-url)
It is with deep sorrow that I announce the passing of our colleague and friend Oded Maler, in the evening of September 3rd, 2018.

Oded was a brilliant researcher, admired for his integrity and his scientific curiosity. He made substantial and original contributions in Formal Methods. He had a broad spectrum of interests including not only computer science and mathematics, but also biology and philosophy of science. His sense of humour and his human qualities, made him a dear and respected colleague to many at home and abroad.

For his colleagues at Verimag, he was a source of inspiration, an example, and the dearest friend. He leaves a huge void in our community.

Joseph Sifakis